

P-Channel Enhancement Mode Field Effect Transistor

Features	General Description
V _{DS} (V) = -30 V	This P-Channel enhancement mode power FETs are produced
I _D = -4.2 A	with high cell density, DMOS trench technology, which is
$R_{DS(ON)} = 50 \text{m} \Omega$ @VGS = -10V	especially used to minimize on-state resistance.
$R_{DS(ON)} = 70 \text{m} \Omega$ @V _{GS} = -4.5V	This device is particularly suited for low voltage application
High density cell design for low RDS(ON).	such as portable equipment, power management and other
	battery powered circuits, and low in-line power loss are needed
	in a very small outline surface mount package.

Pin Configurations

● Absolute Maximum Ratings @T_A=25°C unless otherwise noted

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		VDSS	-30	V	
Gate-Source Voltage		Vgss	±20	V	
Drain Current	Continuous	· Io	-4.2	٨	
	Pulsed ₍₁₎		-10	А	
Power Dissipation		Po	350	mW	
Operating and Storage Temperature Range		T _J ,TstG	-55 to 150	℃	

● Electrical Characteristics @T_A=25°C unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	•		•				
Drain-Source Breakdown Voltage	V(BR)DSS	V _{GS} = 0 V, I _D = -250 μA	-30			V	
Zero Gate Voltage Drain Current	Ipss	V _{DS} = -30 V, V _{GS} = 0 V			-1	μΑ	
Gate - Body Leakage, Forward	Igssf	V _{GS} = +20 V, V _{DS} = 0 V			100	nA	
Gate - Body Leakage, Reverse	Igssr	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA	
ON CHARACTERISTICS (2)							
Gate Threshold Voltage	VGS (TH)	V _{DS} = V _{GS} , I _D = -250 μA	-1	-1.6	-2.0	V	
Static Drain-Source On-Resistance	Rds(on)	V _G S = -4.5 V, I _D = -4.2 A		70	95		
		V _{GS} = -10 V, I _D = -4.5 A		50	60	mΩ	
Forward Transconductance	GFS	V _{DS} = -5 V, I _D = -2.8 A	4	6		S	
DYNAMIC CHARACTERISTICS (3)							
Input Capacitance	Ciss	V 0VV 0V 5 40		680		pF	
Output Capacitance	Coss	V _{DS} = -6 V, V _{GS} = 0 V, F = 1.0		72		pF	
Reverse Transfer Capacitance	Crss	IVITZ		58		pF	
SWITCHING CHARACTERISTICS (3)							
Turn-On Delay Time	T _{D(ON)}	$V_{DD} = -6 \text{ V}, \text{ RL} = 6\Omega, I_{D} = -1.0 \text{ A},$			20	ns	
Turn-On Rise Time	TR	$V_{GEN} = -4.5 \text{ V,Rg} = 6\Omega$			10		
Turn-Off Delay Time	T _{D(OFF)}	V_{DD} = -6 V, R_L = 6 Ω , I_D = -1.0 A,			65	ns	
Turn-Off Fall Time	TF	$V_{GEN} = -4.5 \text{ V,Rg} = 6\Omega$			45		
DRAIN-SOURCE DIODE CHARACTERIS	STICS AND N	MAXIMUM RATINGS			•		
Drain-Source Diode Forward Current ₍₄₎	Is				-1.35	Α	
Drain-Source Diode Forward Voltage(2)	Vsp	V _{GS} = 0 V, I _S = -0.75 A	-0.6	-0.8	-1.3	V	

Notes

- 1. Pulse width limited by maximum junction temperature.
- 2. Pulse test: PW \leqslant 300 μ s, duty cycle \leqslant 2%.
- 3. Guaranteed by design, not subject to production testing.
- 4、Surface Mounted on FR4 Board,T < 5 sec.

FS2203

Typical Performance Characteristics (TJ =25 Noted)

Figure 1. Output Characteristics

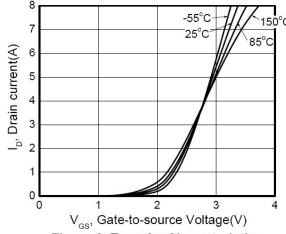
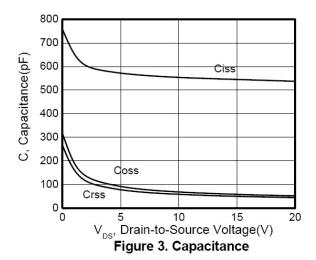



Figure 2. Transfer Characteristics

V_™, Gate-Source Threshold Voltage (V) 1.4 1.3 1.2 1.1 1.0

1.6

1.5

0.9 **L** -50 0 50 100 Tj, Junction Temperature (°C) Figure 5. Gate Thershold Vs. Temperature

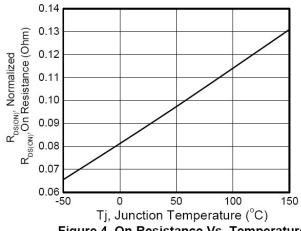
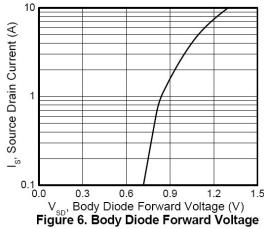



Figure 4. On Resistance Vs. Temperature

Vs. Source Current