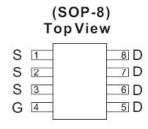
# 15V P-Channel MOSFET

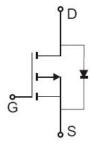
#### Features

-15V/±8V. 11A,

 $R_{DS(ON)} = 15m \Omega$  @V<sub>GS</sub> = -4.5V

 $R_{DS(ON)} = 20m \Omega$  @V<sub>GS</sub> = -2.5V


 $R_{DS(ON)} = 27m \Omega$  @V<sub>GS</sub> = -1.8V


Lead Free Available (RoHS Compliant)

## General Description

The FS2235 combines advanced trench MOSFET technology with a low resistance package to provide extremely low  $R_{DS(ON)}$ . this device is well suited for high current load applications.

## • Pin Configuration





## Absolute Maximum Ratings T<sub>A</sub>=25°C unless otherwise noted

| Absolute Maximum Ratings (T <sub>A</sub> =25 U | nless Otherwis     | e Noted) |            |            |
|------------------------------------------------|--------------------|----------|------------|------------|
| Parameter                                      |                    | Symbol   | Limits     | Units      |
| Drain-Source Voltage                           |                    | VDS      | -15        | V          |
| Gate-Source Voltage                            |                    | Vgs      | ±8         | V          |
| MAX Continuous Drain Current                   |                    | lo       | -11        | А          |
| Pulsed Drain Current <sub>1)</sub>             |                    | Ідм      | -20        | А          |
| Maximum Power Dissipation                      | T <sub>A</sub> =25 | PD       | 3          | W          |
|                                                | T <sub>A</sub> =70 |          | 2.1        |            |
| Operating Junction Temperature                 |                    | TJ       | -55 to 150 | $^{\circ}$ |
| Junction-to-Case Thermal Resistance            |                    | Ruc      | 30         | /W         |
| Junction-to-Ambient Thermal Resistance (PCB    |                    | R JA     | 50         | /W         |
| mounted) 2)                                    |                    |          |            |            |

Notes: 1.Maximum DC current limited by the package 2.1-in2 2oz Cu PCB board

## Electrical Characteristics (T<sub>A</sub>=25°C unless otherwise noted)

| Symbol  | Parameter                       | Conditions                                                        | Min  | Тур  | Max  | Units |  |  |  |  |
|---------|---------------------------------|-------------------------------------------------------------------|------|------|------|-------|--|--|--|--|
| STATIC  |                                 |                                                                   |      |      |      |       |  |  |  |  |
| Bvdss   | Drain-Source Breakdown Voltage  | Vgs=0V,ID=-250 A                                                  | -15  |      |      | V     |  |  |  |  |
|         |                                 | VGS = -4.5V, ID = -11A                                            |      | 12   | 15   |       |  |  |  |  |
| RDS(ON) | Drain-Source On-Resistance      | VGS = -2.5V, ID = -10A                                            |      | 17   | 20   | mΩ    |  |  |  |  |
|         |                                 | VGS =-1.8V, ID = -6A                                              |      | 20   | 27   |       |  |  |  |  |
| VGS(th) | Gate-Threshold Voltage          | Vgs =VGS, ID=-250 A                                               | -0.5 | -0.7 | -0.9 | V     |  |  |  |  |
| Igss    | Gate-Body Leakage               | V <sub>GS</sub> =+8V, V <sub>DS</sub> = 0V                        |      |      | +100 | nA    |  |  |  |  |
| IDSS    | Zero Gate Voltage Drain Current | V <sub>DS</sub> = -15V, V <sub>GS</sub> = 0V                      |      |      | -1   | Α     |  |  |  |  |
| grs     | Forward Transconductance        | V <sub>DS</sub> = -5V, I <sub>D</sub> =-11A                       |      | 30   |      | S     |  |  |  |  |
| DYNAMIC |                                 |                                                                   |      |      |      |       |  |  |  |  |
| Qg      | Total Gate Charge               |                                                                   |      | 45   |      | nC    |  |  |  |  |
| Qgs     | Gate-Source Charge              | V <sub>DS</sub> =-15V, ID=-5A, V <sub>GS</sub> =-8V               |      | 10   |      |       |  |  |  |  |
| Qgd     | Gate-Drain Charge               |                                                                   |      | 8    |      |       |  |  |  |  |
| tD(on)  | Turn-On Delay Time              |                                                                   |      | 30   |      |       |  |  |  |  |
| tr      | Turn-On Rise Time               | V <sub>DD</sub> = -15V, R <sub>L</sub> = 15 I <sub>D</sub> = -1A, |      | 22   |      | ns ns |  |  |  |  |
| tD(off) | Turn-Off Delay Time             | V <sub>GEN</sub> =-8V R <sub>G</sub> = 6                          |      | 80   |      |       |  |  |  |  |
| tf      | Turn-Off Fall Time              |                                                                   |      | 34   |      |       |  |  |  |  |

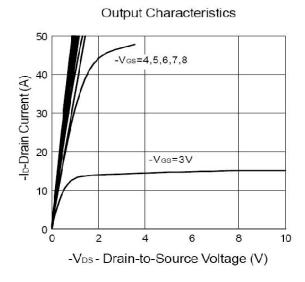
A: The value of R<sub>BJA</sub> is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub> =25°C. The Power dissipation P<sub>DSM</sub> is based on R<sub>BJA</sub> and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

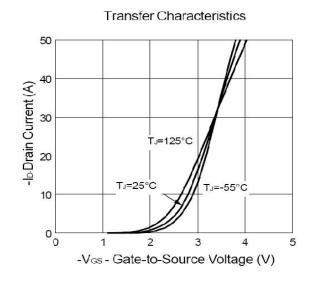
B. The power dissipation  $P_0$  is based on  $T_{J(NAN)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

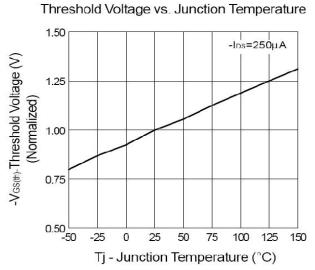
C: Repetitive rating, pulse width limited by junction temperature  $T_{J(\text{MAX})}\!\!=\!\!175^{\circ}\text{C}.$ 

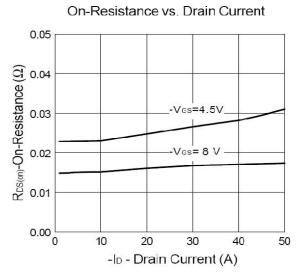
D. The R  $_{\text{BJA}}$  is the sum of the thermal impedence from junction to case R  $_{\text{BJC}}$  and case to ambient.

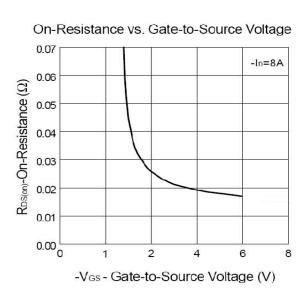
E. The static characteristics in Figures 1 to 6 are obtained using <300  $\mu s$  pulses, duty cycle 0.5% max.

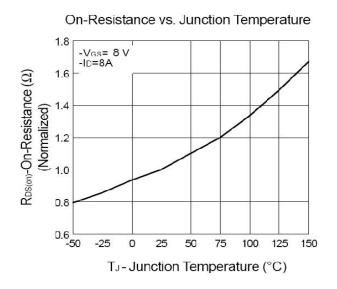

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T\_100AX\_=175°C.


G. The maximum current rating is limited by bond-wires.

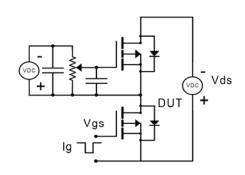

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25°C. The SOA curve provides a single pulse rating.

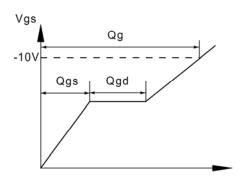

<sup>\*</sup>This device is guaranteed green after data code 8X11 (Sep  $1^{\rm ST}$  2008).


# **FS2235**

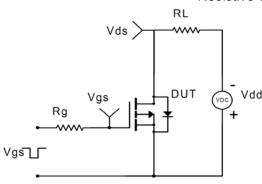


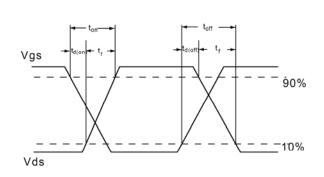


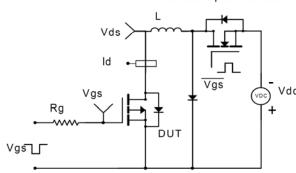



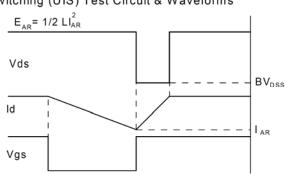


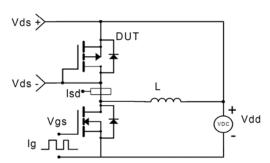


## Gate Charge Test Circuit & Waveform

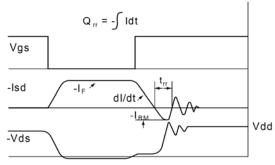






## Resistive Switching Test Circuit & Waveforms







# Unclamped Inductive Switching (UIS) Test Circuit & Waveforms





## Diode Recovery Test Circuit & Waveforms



