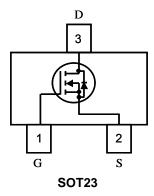


N-Channel Enhancement Mode Field Effect Transistor


Features

Advanced trench process technology
High-density cell design for ultra low on-resistance
Compact and low profile SOT23 package

General Description

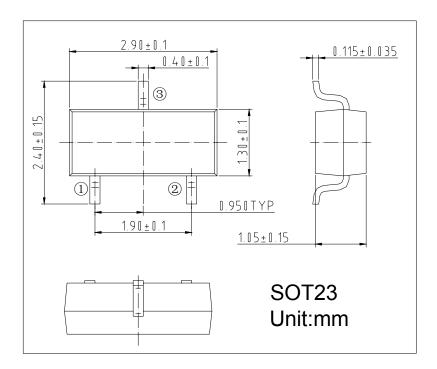
This N-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits, and low in-line power dissipation are needed in a very small outline surface mount package. Excellent thermal and electrical capabilities.

• Pin Configurations

Absolute Maximum Ratings @T_A=25℃ unless otherwise noted

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		V _{DSS}	200	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current (1)(2)	Continuous		2.0	А	
	Pulsed	l _D	6		
Power Dissipation		P _D	150	mW	
Operating and Storage Junction Temperature Range		T _J , T _{STG}	-55 to +150	°C	

• Electrical Characteristics @T_A=25°C unless otherwise noted


Symbol	Parameter	Limit	Min	Тур	Max	Unit			
STATIC									
VDS	Drain-Source Breakdown Voltage	VGS=0V, ID=250μA	200			V			
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250μA	1.0		3.0	٧			
IGSS	Gate Leakage Current	VDS=0V, VGS=±20V			±100	nA			
IDSS	Zero Gate Voltage Drain Current	VDS=60V, VGS=0V			1	μА			
RDS(ON)	Daria Carras Ca Basistanas	VGS=10V, ID= 2.0A		520	580	- mΩ			
	Drain-Source On-Resistancea	VGS=4.5V, ID= 1.5A		650	800				
VSD	Diode Forward Voltage	IS=1A, VGS=0V		0.8	1.2	V			
DYNAMIC		·	•			<u>, </u>			
Qg	Total Gate Charge	VDS=30V, VGS=10V, ID=2.0A	VDS=30V, VGS=10V, ID=2.0A 12						
Qg	Total Gate Charge			6.5		nC			
Qgs	Gate-Source Charge	VDS=30V, VGS=4.5V, ID=2.0A		2.2					
Qgd	Gate-Drain Charge			2.7					
Ciss	Input capacitance			350		pF			
Coss	Output Capacitance	VDS=30V, VGS=0V, f=1.0MHz		40					
Crss	Reverse Transfer Capacitance			12					
Rg	Gate Resistance	VDS=0V, VGS=0V, f=1MHz		0.7		Ω			
td(on)	Turn-On Delay Time			10		ns			
tr	Turn-On Rise Time	VDD=20V, RL =20Ω ID=1A,		11					
td(off)	Turn-Off Delay Time	VGEN=10V RG=1Ω		29					
tf	Turn-Off Fall Time			3					

Notes:

(1). Pulse Test : Pulse Width $< 300 \mu s$, Duty Cycle < 2%.

(2). Surface Mounted on FR4 Board, t < 10 sec.

Package Information

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. FORSEMI assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. FORSEMI reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.