

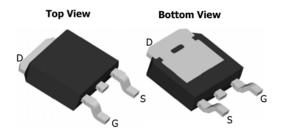
60V P-Channel MOSFET

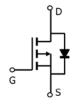
Features

-60V/50A,

 $R_{DS(ON)}$ < 25m Ω @ V_{GS} = - 10V

 $R_{DS(ON)} < 35m\Omega$ @ V_{GS} = - 4.5V


Lead Free Available (RoHS Compliant)


General Description

The FS2243 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}$. this device is well suited for high current load applications.

• Pin Configuration

TO252

TO252

• Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-60	V	
Gate-Source Voltage		V _{GS}	±20	7	
Continuous Drain Current	T _A =25°C		-50	А	
	T _A =70°C	I _D	-35		
Pulsed Drain Current note		I _{DM}	-150]	
Avalanche energy L=1mH ^{note}		E _{AS} , E _{AR}	722	mJ	
Power Dissipation note	T _A =25°C	D	50	w	
	T _A =70°C	→ P _D	25		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient ^A	t ≤ 10s	В	17	26	°C/W			
Maximum Junction-to-Ambient AD	Stoody State	$R_{ heta JA}$	40	50				
Maximum Junction-to-Lead	Steady-State	$R_{ heta JL}$	2.5	3				

Note:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec. Pulse Test: Pulse Width $\le 300\,\mu$ s, Duty Cycle $\le 2\%$.
- 3. EAS condition: Tj=25 $^{\circ}$ C,VDD=-30V,VG=-10V,L=1mH,Rg=25 $^{\Omega}$,IAS=38A

• Electrical Characteristics (T_A=25°C unless otherwise noted)

Symbol	Parameter	Condition	Conditions		Тур	Max	Units
STATIC PA	ARAMETERS					•	•
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V	I _D =-250μA, V _{GS} =0V				V
I _{DSS}	Zero Gate Voltage Drain Current	\/ - 40\/ \/ -0	T _A =25°C		-0.002	-1	uA
		V _{DS} =-48V, V _{GS} =0	T _A =55°C			-5	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V				±0.1	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =VGS I _D =-250µ	V _{DS} =VGS I _D =-250μA		-2.6	-3.5	V
I _{D(ON)}	On state drain current ^{note}	V _{GS} =-10V, V _{DS} =-5V	V _{GS} =-10V, V _{DS} =-5V				Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-20A	T _A =25°C		23	28	mΩ
		V _{GS} 10V, I _D 20A	T _A =125°C		38		
		V _{GS} =-4.5V, I _D =-10A	V _{GS} =-4.5V, I _D =-10A		30	35	•
g FS	Forward Trans conductance	V _{DS} =-10V, I _D =-20A	V _{DS} =-10V, I _D =-20A		25		S
V _{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.75	-1.2	V
Is	Maximum Body-Diode Continuous Curr	ent			-12	Α	
DYNAMIC	PARAMETERS			•		•	
C _{iss}	Input Capacitance		V _{GS} =0V, V _{DS} =-30V, f=1MHz		6460		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-30V, f			715		
C _{rss}	Reverse Transfer Capacitance	1			546		
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			6	10	Ω
SWITCHIN	G PARAMETERS					•	•
Q _g (10V)	T + 1 0 + 01		V _{GS} =-10V, V _{DS} =-30V, I _D =-12A		95.5		
Q _g (4.5V)	Total Gate Charge	101/11/ 001/			75		nC
Q _{gs}	Gate Source Charge	V_{GS} =-10V, V_{DS} =-30V			16		
Q _{gd}	Gate Drain Charge				19		
t _{D(on)}	Turn-On Delay Time		V_{GS} =-10V, V_{DS} =-30V, R_L =2.5 Ω ,		15		
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-30V			17		ns
$t_{D(off)}$	Turn-Off Delay Time	R_{GEN} =3 Ω			40		
t _f	Turn-Off Fall Time				45		
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dI/dt=100A/μs			50	65	1
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-12A, dI/dt=100A/μs			59		nC

A: The value of R_{BJA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on R_{BJA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C.

D. The R $_{\text{BJA}}$ is the sum of the thermal impedence from junction to case R $_{\text{BJC}}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_IMAXY=175°C.

G. The maximum current rating is limited by bond-wires.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

^{*}This device is guaranteed green after data code 8X11 (Sep 1ST 2008).

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

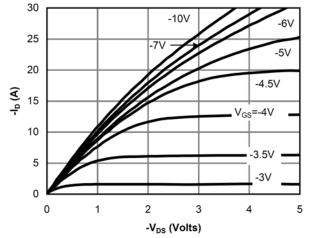


Fig 1: On-Region Characteristics

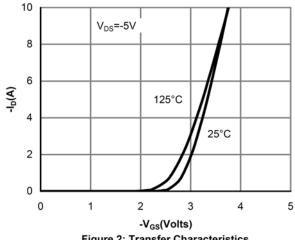


Figure 2: Transfer Characteristics

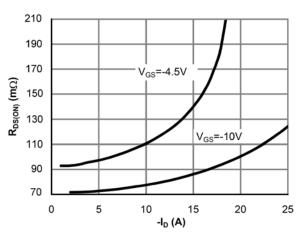


Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

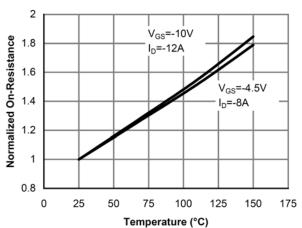


Figure 4: On-Resistance vs. Junction Temperature

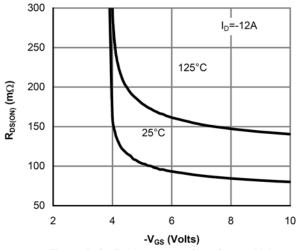


Figure 5: On-Resistance vs. Gate-Source Voltage

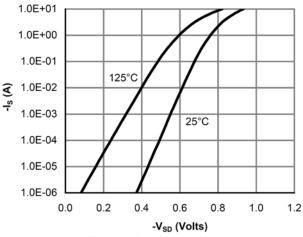
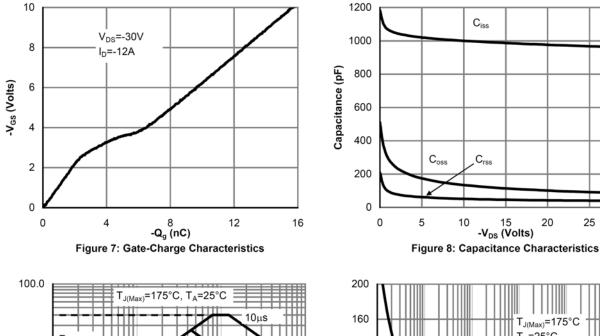



Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

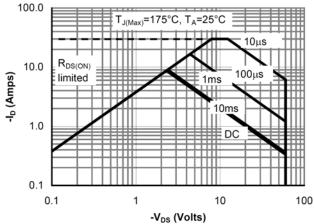


Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

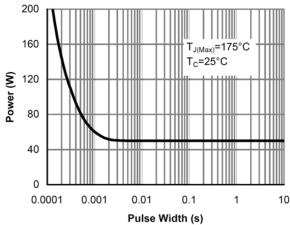


Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

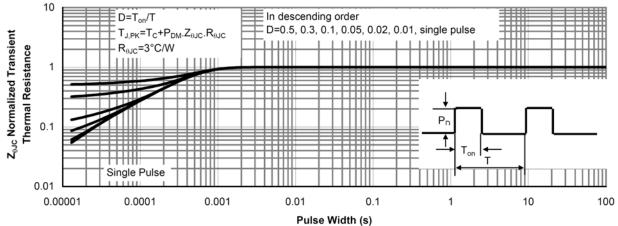


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

30

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

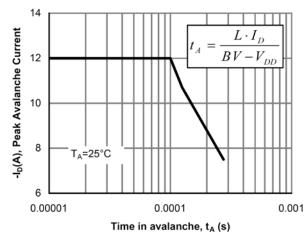


Figure 12: Single Pulse Avalanche capability

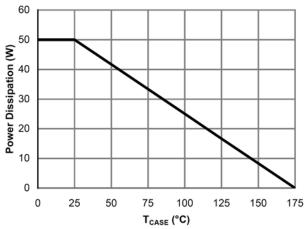


Figure 13: Power De-rating (Note B)

Figure 14: Current De-rating (Note B)

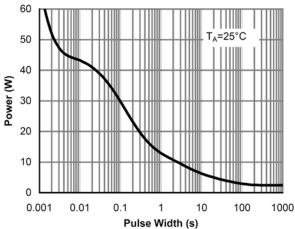


Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

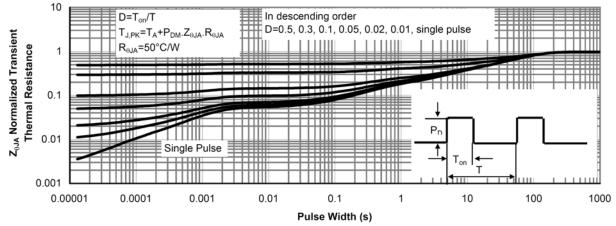
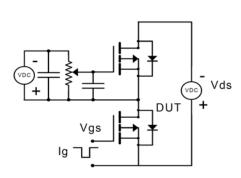
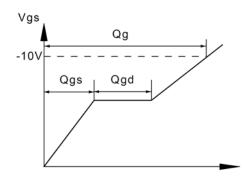
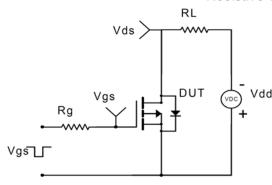
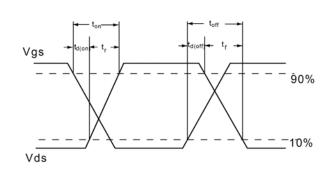
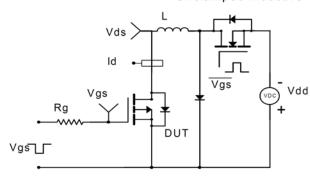
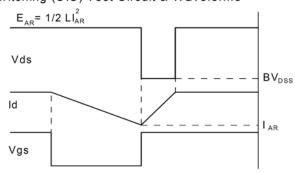




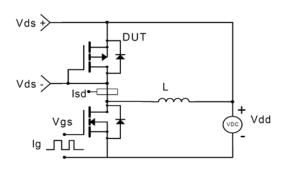
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

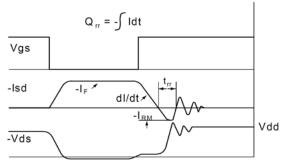

FS2243


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

