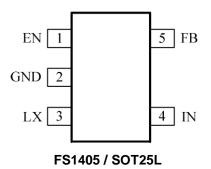


2MHz 2A MAX Output Synchronous Step Down Converter

Features

- Soft Start
- Internal Current Limit
- High Efficiency Up to 95%
- Very Low Quiescent Current of 40uA
- MAX 2A Output Current at V_{IN}=3V
- 2MHz Constant Frequency Operation
- Internal Synchronous Rectifier Eliminates Schottky Diode
- Adjustable Output Voltages From 0.6V to VIN
- Fixed Output Voltage Options Available
- 100% Duty Cycle Low-Dropout Operation
- 0.1uA Shutdown Current
- Tiny SOT23-5L Package

Applications


- Blue Tooth Headsets
- Portable Audio Players
- Mobile Phones
- · Wireless and DSL Modems
- Digital Cameras
- Portable Instruments

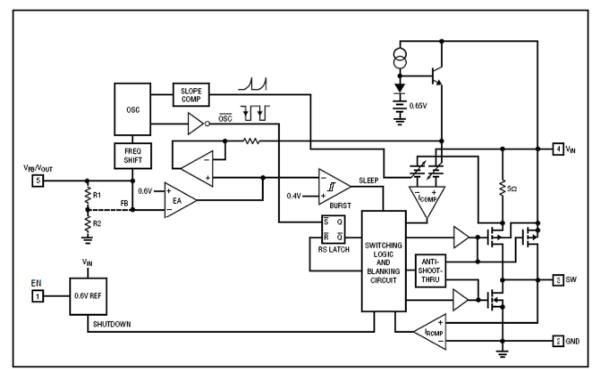
General Description

The FS1405 is a fixed-frequency current-modes Synchronous PWM step down converter that is capable of delivering MAX 2A of output current while achieving peak efficiency of 95%. Under light load conditions, the FS1405 operates in a proprietary pulse skipping mode that consumes just 40uA of supply current, maximizing battery life in portable applications. The FS1405 operates with a fixed frequency of 2MHz, minimizing noise in noise-sensitive applications and allowing the use of small external components. The FS1405 is an ideal solution for applications powered by Li-lon batteries or other portable applications that require small board space.

The FS1405 is available in an adjustable output voltage version capable of generating output voltage version from 0.6V to V_{IN} . The FS1405 is available in the tiny 6-pin SOT23-5L package.

Pin Configurations

Absolute Maximum Ratings

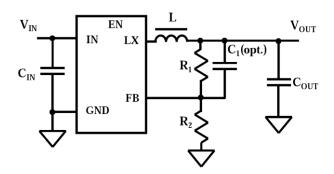

Parameter	Symbol	Ratings	Unit
IN Pin Voltage	V _{IN}	-0.3 to 7V	V
FB Pin Voltage	V_{FB}	-0.3 to 7V	V
EN Pin Voltage	V _{EN}	-0.3 to 7V	V
SW Pin Voltage	V _{sw}	-0.3 to V _{IN} + 0.3	V
Continuous SW Current	I _{sw}	Internally limited	Α
Maximum Power Dissipation (derate 5.3mW/ $^{\circ}\!$	P _D	530	mW
Operating Junction Temperature	T _{opr}	-40 to + 150	
Storage Temperature Range	T _{stg}	-55 to + 150	$^{\circ}\!\mathbb{C}$
Lead Temperature (Soldering, 10 seconds)	T _{solder}	300	

Electrical Characteristics

($V_{IN}=V_{EN}=3.6V$, $T_A=25^{\circ}$ C $C_{in}=4.7Uf$ $C_{out}=10uF$ all capacitors are ceramic, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage Range	V _{IN}		2.5		6.5	V
Under Voltage Lockout Threshold	V _{UVLO}	V _{IN} rising, hysteresis =0.1V	2.25	2.4	2.5	V
Operating Supply Current		V _{FB} =60%,I _{OUT} =0		586		uA
Standby Supply Current		V _{FB} =105%,I _{OUT} =0		33	40	uA
Shutdown Supply Current		V _{EN} =0V,V _{IN} =4.2V		0.1	5	uA
		T _A =25℃	0.591	0.6	0.609	V
Adjustable Version Regulation Voltage	V_{FB}	0°C <t<sub>A<85°C</t<sub>	0.588	0.6	0.612	V
		-40℃ <t<sub>A<85℃</t<sub>	0.582	0.6	0.618	V
Output Voltage Line Regulation		V _{IN} =3V to 5V		0.016	0.4	%/V
Output Voltage Load Regulation		I _{out} =10mA to 1500mA	1	1		%
Inductor Current Limit	I _{LIM}	V_{IN} =3.0V, V_{FB} =90% of $V_{out(NOM)}$		2.5		Α
Oscillator Frequency	f _{SW}	V _{FB} or V _{OUT} in regulation		2		MHz
PMOS On Resistance	R _{ONP}	I _{SW} =-100mA		0.25		Ω
NMOS On Resistance	R _{ONN}	I _{SW} =100mA		0.23		Ω
SW Leakage Current		EN=GND,V _{IN} =5.5V V _{SW} =5.5V			1	uA
EN Logic High Threshold	V _{IH}	V _{IN} =2.7V to 5.5V	1.4			V
EN Logic Low Threshold	V _{IL}	V _{IN} =2.7V to 5.5V			0.4	V
EN Input Bias Current	I _{EN}	V _{IN} =5.5V,EN=GND or IN		0.01	0.1	uA

Typical Block Diagram


Pin Description

FS1405 - 1234

DESIGNATOR	SYMBOL	DESCRIPTION
12	Output Detection Voltage	AD=ADJ
34	Package Type:	SK: SOT23-5L

NO:	Pin Name	Pin Description
	- FN	Enable Control Input. Drive EN to IN or to a logic high for normal operation, drive to GND or a
(1)	EN	logic low to disable the regulator.
2	GND	Ground.
3	LX	Switching Node Output. Connect this pin to the switching end of the inductor.
4	IN	Power Input. Bypass to GND as close as possible to the IC with a high quality ceramic capacitor.
		Feedback Node. For fixed output voltage options, connects this pin directly to the output. For the
(5)	FB	Adjustable output version the voltage at this pin is regulated to 0.6V; connect to this pin to the
		center of the output voltage feedback network.

• Application Information

Application note:

1. Inductor Value (Table 1)

Table 1. Typical Inductor Values

V _{out}	0.6V to 0.9V	0.9V to 1.8V	>1.8V
L	1.5uH	2.2uH	2.7uH

- 2, C_{in} =4.7uF(ceramic capacitor).
- 3. Cout=10uF(ceramic capacitor).
- 4. Output Voltage Programming

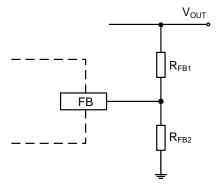


Figure 1. Output Voltage Programming

Figure 1 shows the Feedback network necessary to set the output voltage when the adjustable version is used. Select the proper ratio of the two feedback resistors $R_{_{FB1}}$ and $R_{_{FB2}}$ based on the desired output voltage. Typically choose $R_{_{FB2}} \approx 100 K \Omega$ and determine $R_{_{FB1}}$ from the output voltage:

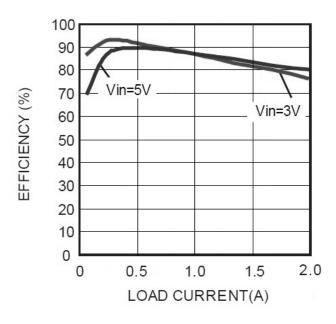
$$R_{FB1} = R_{FB2} (\frac{V_{OUT}}{0.6V} - 1)$$

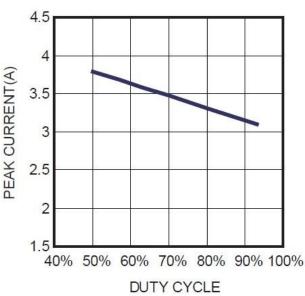
Connect a small capacitor across $R_{\mbox{\tiny FB1}}$ for feed forward capacitance at the FB pin:

$$C_{ff} = 2 \times 10^{-5} / R_{FB1}$$

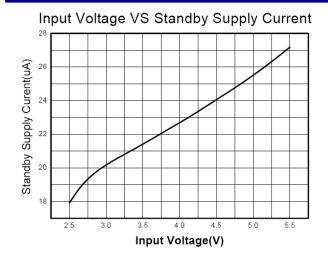
where $R_{\text{\tiny FB1}}$ =900K Ω use 22pF. When using very low ESR output capacitors, such as ceramic, check for stability while examining load-transient response, and increase the compensation capacitor C_1 if needed.

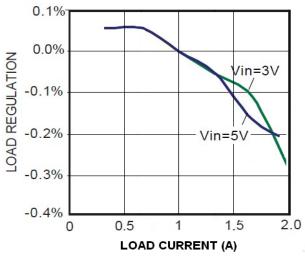
5. Dropout Operation

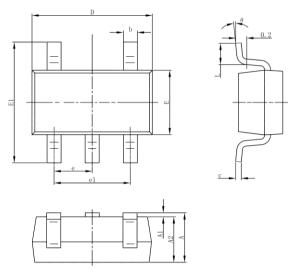

As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for move than one cycle until it reaches 100% duty cycle. Possible occurred larger ripple on the low-dropout operation. Recommended operating voltage $V_{\text{\tiny IN}} \geqslant V_{\text{\tiny OUT}} + 0.7V$


PCB layout caution

- 1. The power traces, consisting of the GND trace, the SW trace and the Vin trace should be keep short, direct and wide.
- $2 \cdot V_{fb}$ should be connected directly to the feedback resistors, The resistive divider R1/R2 must connected between the (+) plate of C_{out} and ground.
- 3. The (+) plate of Cin should be connected to Vin as closely as possible, because this capacitor provides the AC current to the internal power MOSFETS.
- 4. Keep the switching node SW away form the sensitive V_{fb} node
- 5. Keep the (-) plates of C_{in} and C_{out} as close as possible
- 6. The high current paths
- 7. The recommended PCB layout


Typical Performance Characteristics


For FS1405


FS1405

Package Information

SOT-23-5L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(E	BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	