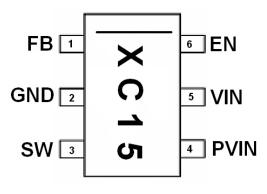


2MHz 2A MAX Output Synchronous Step Down Converter

Features

- Soft Start
- Internal Current Limit
- High Efficiency Up to 95%
- Very Low Quiescent Current of 40uA
- MAX 2A Output Current at Vin=3V
- 2MHz Constant Frequency Operation
- Internal Synchronous Rectifier Eliminates Schottky Diode
- Adjustable Output Voltages From 0.6V to VIN
- Fixed Output Voltage Options Available
- 100% Duty Cycle Low-Dropout Operation
- 0.1uA Shutdown Current
- Tiny SOT23-6L Package

Applications


- · Blue Tooth Headsets
- Portable Audio Players
- Mobile Phones
- · Wireless and DSL Modems
- Digital Cameras
- · Portable Instruments

General Description

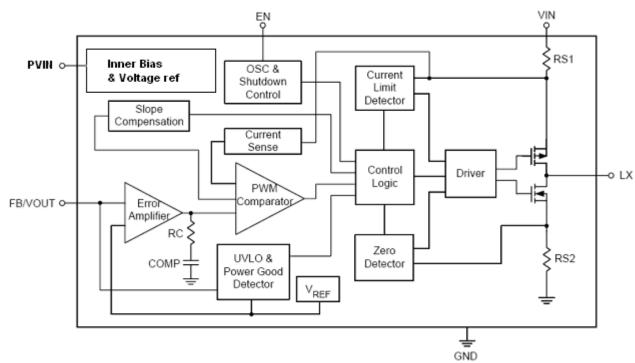
The FS1403 is a fixed-frequency current-modes Synchronous PWM step down converter that is capable of delivering MAX 2A of output current while achieving peak efficiency of 95%. Under light load conditions, the FS1403 operates in a proprietary pulse skipping mode that consumes just 40uA of supply current, maximizing battery life in portable applications. The FS1403 operates with a fixed frequency of 2MHz, minimizing noise in noise-sensitive applications and allowing the use of small external components. The FS1403 is an ideal solution for applications powered by Li-lon batteries or other portable applications that require small board space.

The FS1403 is available in an adjustable output voltage version capable of generating output voltage version from 0.6V to VIN. The FS1403 is available in the tiny 6-pin SOT23-6L package.

Pin Configurations

FS1403 / SOT26L

Absolute Maximum Ratings

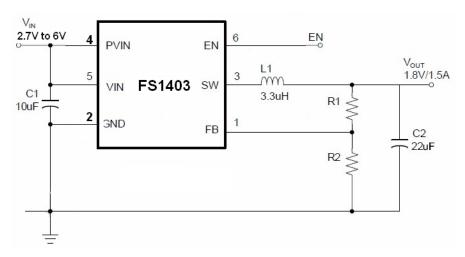

Parameter	Symbol	Ratings	Unit
IN Pin Voltage		-0.3 to 7V	V
FB Pin Voltage	V_{FB}	-0.3 to 7V	V
EN Pin Voltage	V _{EN}	-0.3 to 7V	V
SW Pin Voltage	Vsw	-0.3 to VIN + 0.3	V
Continuous SW Current	Isw	Internally limited	А
Maximum Power Dissipation (derate 5.3mW/°C above $T_A\!\!=\!\!50^{\circ}\!$	P _D	530	mW
Operating Junction Temperature	Topr	-40 to + 150	
Storage Temperature Range	Tstg	-55 to + 150	$^{\circ}$
Lead Temperature (Soldering, 10 seconds)	Tsolder	300	

• Electrical Characteristics

(VIN=VEN=3.6V,TA= $25\,^{\circ}$ C Cin=4.7uF Cout=10uF all capacitors are ceramic, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage Range	V _{IN}		2.5		6.5	V
Under Voltage Lockout Threshold	Vuvlo	VIN rising, hysteresis =0.1V	2. 25	2.4	2.5	V
Operating Supply Current		VFB=60%,IOUT=0		586		uA
Standby Supply Current		VFB=105%,IOUT=0		33	40	uA
Shutdown Supply Current		VEN=0V,VIN=4.2V		0.1	5	uA
		TA=25℃	0.591	0.6	0.609	V
Adjustable Version Regulation Voltage	VFB	0°C <ta<85°c< td=""><td>0.588</td><td>0.6</td><td>0.612</td><td>V</td></ta<85°c<>	0.588	0.6	0.612	V
		-40°C< T A< 85 °C	0.582	0.6	0.618	V
Output Voltage Line Regulation		Vin=3V to 5V		0.016	0.4	%/V
Output Voltage Load Regulation		lout=10mA to 1500mA		1		%
Inductor Current Limit	Ішм	VIN=3.0V,VFB=90% of V _{out(NOM)}		2.5		А
Oscillator Frequency	fsw	VFB or Vout in regulation		2		MHz
PMOS On Resistance	Ronp	Isw=-100mA		0.25		Ω
NMOS On Resistance	Ronn	Isw=100mA		0.23		Ω
SW Leakage Current		EN=GND,VIN=5.5V Vsw=5.5V			1	uA
EN Logic High Threshold	ViH	VIN=2.7V to 5.5V	1.4			V
EN Logic Low Threshold	VIL	VIN=2.7V to 5.5V			0.4	V
EN Input Bias Current	len	VIN=5.5V,EN=GND or IN		0.01	0.1	uA

Typical Block Diagram



Pin DescriptionFS1403 - 1234

DESIGNATOR	SYMBOL	DESCRIPTION
12	Output Detection Voltage	AD=ADJ
34	Package Type:	SL: SOT23-6L

Pin	Pin Name	Pin Description		
		Feedback Node. For fixed output voltage options, connects this pin directly to the output. For the		
1	FB	Adjustable output version the voltage at this pin is regulated to 0.6V; connect to this pin to the		
		center of the output voltage feedback network.		
2	GND	Ground.		
3	SW	Switching Node Output. Connect this pin to the switching end of the inductor.		
4	PVIN	Input supply pin for power FET.		
5	VIN	Power Input. Bypass to GND as close as possible to the IC with a high quality ceramic capacitor.		
	EN	Enable Control Input. Drive EN to IN or to a logic high for normal operation, drive to GND or a		
6		logic low to disable the regulator.		

• Application Information

Application note:

1. Inductor Value (Table 1)

Table 1. Typical Inductor Values

Vout	0.6V to 0.9V	0.9V to 1.8V	>1.8V
L	1.5uH	2.2uH	2.7uH

- 2. Cin=4.7uF(ceramic capacitor).
- 3. Cout=10uF(ceramic capacitor).
- 4. Output Voltage Programming

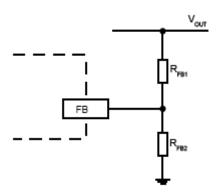


Figure 1. Output Voltage Programming

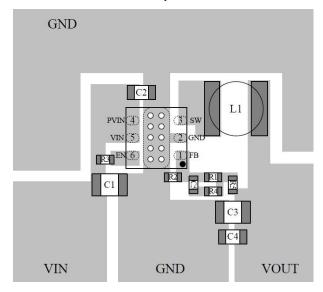
Figure 1 shows the Feedback network necessary to set the output voltage when the adjustable version is used. Select the proper ratio of the two feedback resistors RFB1 and RFB2 based on the desired output voltage. Typically choose RFB2 $\approx 100 \text{K}\,\Omega$ and determine RFB1 from the output voltage:

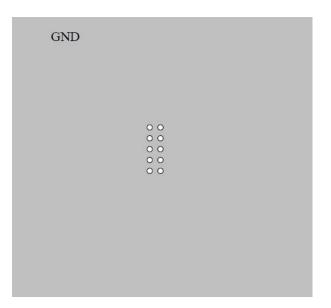
$$R_{FB1} = R_{FB2} (\frac{V_{OUT}}{0.6V} - 1)$$

Connect a small capacitor across RFB1 for feed forward capacitance at the FB pin:

$$C_{ff} = 2 \times 10^{-5} / R_{FB1}$$

where RfB1=900K Ω use 22pF. When using very low ESR output capacitors, such as ceramic, check for stability while examining load-transient response, and increase the compensation capacitor C1 if needed.

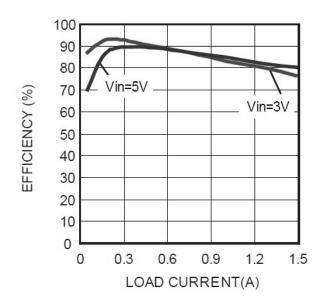

5. Dropout Operation

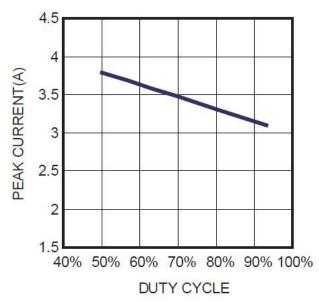

As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for move than one cycle until it reaches 100% duty cycle. Possible occurred larger ripple on the low-dropout operation. Recommended operating voltage $VIN \ge VOUT + 0.7V$

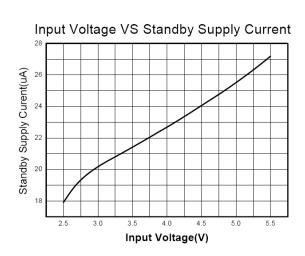
PCB layout caution

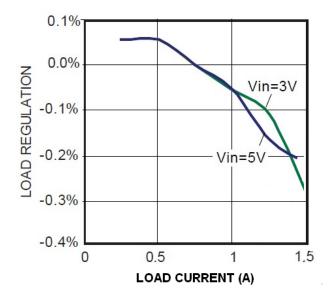
- 1. The power traces, consisting of the GND trace, the SW trace and the Vin trace should be keep short, direct and wide.
- 2. Vfb should be connected directly to the feedback resistors, The resistive divider R1/R2 must connected between the (+) plate of Cout and ground.
- 3. The (+) plate of Cin should be connected to Vin as closely as possible, because this capacitor provides the AC current to the internal power MOSFETS.
- 4. Keep the switching node SW away form the sensitive Vfb node
- 5. Keep the (-) plates of Cin and Cout as close as possible
- 6. The high current paths

7. The recommended PCB layout

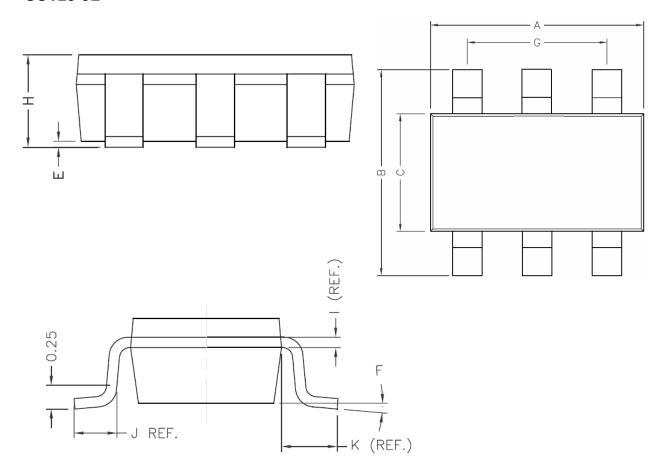



Top layer


Bottom layer


Typical Performance Characteristics

For FS1403



Package Information

SOT23-5L

REF.	Millim	meter	REF.	DIMENSIONS
NEF.	Min. Max.	Millimeter		
Α	2.70	3.10	G	1.90 REF.
В	2.60	3.00	Н	1.10 MAX.
С	1.40	1.80		0.12 REF.
D	0.30	0.55	J	0.45 REF.
E	0	0.10	K	0.60 REF.
F	O°	10°	L	0.95 REF.