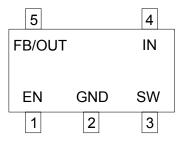


1.5MHz 1A Synchronous Step Down Converter

Features

- · Soft Start
- Internal Current Limit
- High Efficiency Up to 93%
- · Very Low Quiescent Current of 24uA
- · Guaranteed 1A Output Current
- 1.5MHz Constant Frequency Operation
- Internal Synchronous Rectifier Eliminates Schottky Diode
- Adjustable Output Voltages From 0.6V to V_{IN}
- Fixed Output Voltage Options Available
- 100% Duty Cycle Low-Dropout Operation
- 0.1uA Shutdown Current
- Tiny SOT23-5L Package

Applications


- Blue Tooth Headsets
- Portable Audio Players
- Mobile Phones
- · Wireless and DSL Modems
- Digital Cameras
- · Portable Instruments

• General Description

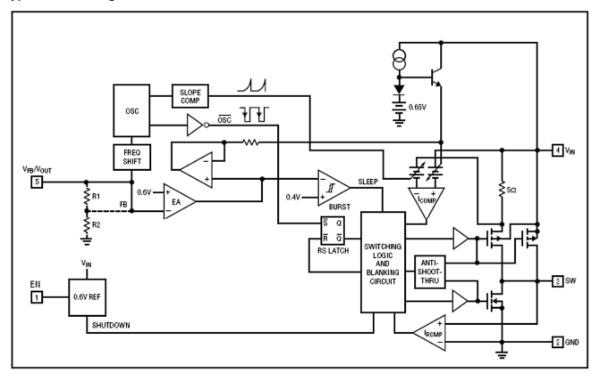
The FS1401 is a fixed-frequency current-modes Synchronous PWM step down converter that is capable of delivering 1A of output current while achieving peak efficiency of 93%. Under light load conditions, the FS1401 operates in a proprietary pulse skipping mode that consumes just 24uA of supply current, maximizing battery life in portable applications. The FS1401 operates with a fixed frequency of 1.5MHz, minimizing noise in noise-sensitive applications and allowing the use of small external components. The FS1401 is an ideal solution for applications powered by Li-lon batteries or other portable applications that require small board space.

The FS1401 is available in a variety of fixed output voltage options, 1.5V,1.8V, 2.5V and is also available in an adjustable output voltage version capable of generating output voltage version from 0.6V to V_{IN} . The FS1401 is available in the tiny 5-pin SOT23-5L package.

• Pin Configurations

SOT23-5L

Absolute Maximum Ratings

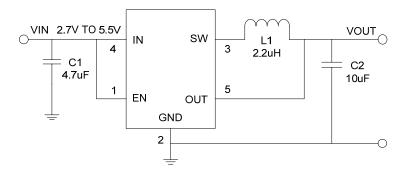

Parameter	Symbol	Ratings	Unit
IN Pin Voltage	V _{IN}	-0.3 to 7V	
FB Pin Voltage	V_{FB}	-0.3 to 7V	V
EN Pin Voltage	V _{EN}	-0.3 to 7V	V
SW Pin Voltage	Vsw	-0.3 to V _{IN} + 0.3	
Continuous SW Current	Isw	Internally limited	А
Maximum Power Dissipation (derate 5.3mW/°C above T _A =50°C)	P _D	530	mW
Operating Junction Temperature	Topr	-40 to + 150	
Storage Temperature Range	Tstg	-55 to + 150	$^{\circ}$
Lead Temperature (Soldering, 10 seconds)	Tsolder	300	

• Electrical Characteristics

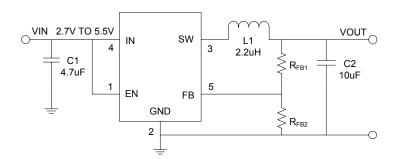
($V_{IN}=V_{EN}=3.6V$, $T_A=25^{\circ}$ C $C_{IN}=4.7u$ F $C_{OUT}=10u$ F all capacitors are ceramic, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage Range	V _{IN}		2.5		6.5	V
Under Voltage Lockout Threshold	V _{UVLO}	V _{IN} rising, hysteresis =0.1V	2.25	2.4	2.5	V
Operating Supply Current		V _{FB} =60%,I _{OUT} =0		586		uA
Standby Supply Current		V _{FB} =105%,I _{OUT} =0		22	33	uA
Shutdown Supply Current		V _{EN} =0V,V _{IN} =4.2V		0.1	5	uA
		T _A =25℃	0.591	0.6	0.609	V
Adjustable Version Regulation Voltage	V_{FB}	0℃ <t<sub>A<85℃</t<sub>	0.588	0.6	0.612	V
		-40℃ <t<sub>A<85℃</t<sub>	0.582	0.6	0.618	V
		FS1401-152SK	1.473	1.5	1.527	
Fixed Output Regulation voltage	V _{OUT}	FS1401-182SK	1.768	1.8	1.832	V
		FS1401-252SK	2.455	2.5	2.545	
Output Voltage Line Regulation		V _{IN} =3V to 5V		0.016	0.4	%/V
Output Voltage Load Regulation		I _{OUT} =10mA to 500mA		0.5		%
Inductor Current Limit	I _{LIM}	V _{IN} =3.6V,V _{FB} =90% of V _{out(NOM)}		1.4		А
		V _{FB} or V _{OUT} in regulation	1.2	1.5	1.8	MHz
Oscillator Frequency	f _{SW}	V_{FB} or V_{OUT} =80% , of $V_{OUT(NOM)}$		360		KHz
PMOS On Resistance	R _{ONP}	I _{SW} =-100mA		0.37	0.6	Ω
NMOS On Resistance	R _{ONN}	I _{SW} =100mA		0.36	0.6	Ω
SW Leakage Current		EN=GND,V _{IN} =5.5V V _{SW} =5.5V			1	uA
EN Logic High Threshold	V _{IH}	V _{IN} =2.7V to 5.5V	1.4			V
EN Logic Low Threshold	V _{IL}	V _{IN} =2.7V to 5.5V			0.4	V
EN Input Bias Current	I _{EN}	V _{IN} =5.5V,EN=GND or IN		0.01	0.1	uA

• Typical Block Diagram


Pin Description

FS1401 - 1234

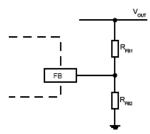

Designator	Symbol	Description
12	Output Detection Voltage	18=1.8V,33=3.3V, AD=ADJ
34	Package Type:	SK: SOT23-5L

Α	Pin Name	Pin Description		
	EN	Enable Control Input. Drive EN to IN or to a logic high for normal operation, drive to GND or a logic		
① EN		low to disable the regulator.		
2	GND	Ground.		
3	SW	Switching Node Output. Connect this pin to the switching end of the inductor.		
4	IN	Power Input. Bypass to GND as close as possible to the IC with a high quality ceramic capacitor.		
		Feedback Node. For fixed output voltage options, connects this pin directly to the output. For the		
(5)	FB	Adjustable output version the voltage at this pin is regulated to 0.6V; connect to this pin to the		
		center of the output voltage feedback network.		

• Application Information

For fixed voltage

For adjustable


Application note:

1. Inductor Value (Table 1)

Table 1. Typical Inductor Values

V _{OUT}	0.6V to 0.9V	0.9V to 1.8V	>1.8V
L	1.5uH	2.2uH	2.7uH

- 2. C_{IN}=4.7uF(ceramic capacitor).
- 3, C_{OUT} =10uF(ceramic capacitor).
- 4. Output Voltage Programming

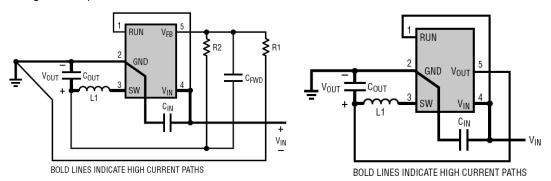
Figure 1. Output Voltage Programming

Figure 1 shows the Feedback network necessary to set the output voltage when the adjustable version is used. Select the proper ratio of the two feedback resistors RFB1 and RFB2 based on the desired output voltage. Typically choose RFB2 \approx 100K Ω and determine RFB1 from the output voltage:

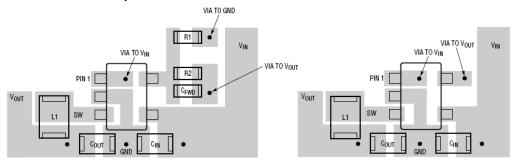
$$R_{FB1} = R_{FB2} (\frac{V_{OUT}}{0.6V} - 1)$$

Connect a small capacitor across RFB1 for feed forward capacitance at the FB pin:

$$C_{ff} = 2 \times 10^{-5} / R_{FB1}$$


where R_{FB1}=900K Ω use 22pF. When using very low ESR output capacitors, such as ceramic, check for stability while examining load-transient response, and increase the compensation capacitor C₁ if needed.

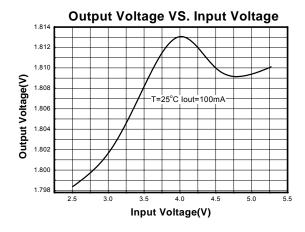
5. Dropout Operation

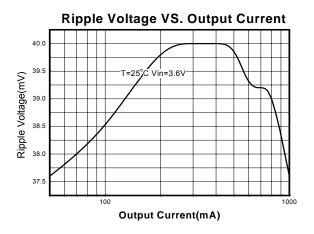

As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for move than one cycle until it reaches 100% duty cycle. Possible occurred larger ripple on the low-dropout operation. Recommended operating voltage VIN > VOUT + 0.7V

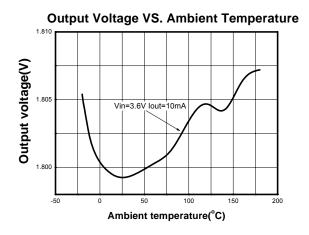
PCB layout caution

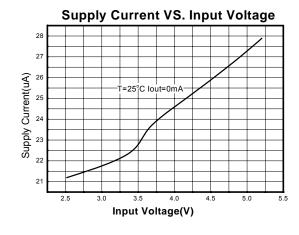
- 1. The power traces, consisting of the GND trace, the SW trace and the Vin trace should be keep short, direct and wide.
- 2. V_{FB} should be connected directly to the feedback resistors, The resistive divider R_1/R_2 must connected between the (+) plate of Cout and ground.
- 3. The (+) plate of C_{IN} should be connected to V_{IN} as closely as possible, because this capacitor provides the AC current to the internal power MOSFETS.
- 4. Keep the switching node SW away form the sensitive V_{FB} node
- 5. Keep the (-) plates of C_{IN} and C_{OUT} as close as possible
- 6. The high current paths

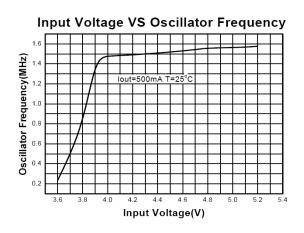
7. The recommended PCB layout

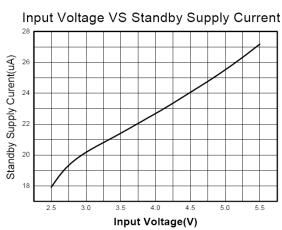


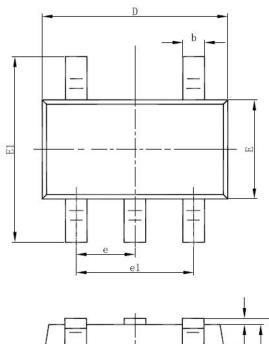

The suggested layout for adjustable

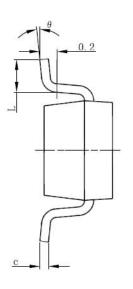

The suggested layout for fixed voltage

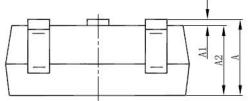

• Typical Performance Characteristics


For FS1401A/B-1.8V









Package Information

SOT-23-5L PACKAGE OUTLINE DIMENSIONS

C L I	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(1	0.950(BSC)		BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°